

Exploring User Experience Evaluation and Commercial Applications of AI Technology in Multimodal Interaction Design for the Automotive Industry

Mu Liyuan^{*a}, Sharfika Raine^b, Shi Zhehan^c

^a City University, Kuala Lumpur, Malaysia, maggie_mu@foxmail.com,

^bCity University, Kuala Lumpur, Malaysia, sharfika.raime@city.edu.my

^cCity University, Kuala Lumpur, Malaysia, shizhehan@163.com

^{*} Mu Liyuan

ABSTRACT

This paper explores the integration of artificial intelligence (AI) technology in multimodal interaction design within the automotive industry, focusing on user experience (UX) evaluation and commercial applications. By examining the role of AI in enhancing interaction modalities such as voice, touch, and gesture, this study highlights the potential for more intuitive and personalized in-car experiences. The paper proposes a theoretical framework to understand the relationship between AI-driven designs, UX optimization, and their commercial viability. Drawing from recent advancements, it underscores the importance of balancing technological innovation with user-centered design principles to address safety, usability, and market demands. The findings aim to provide a foundation for future empirical research, guiding automotive stakeholders in developing advanced and commercially viable human-machine interfaces that redefine the driving experience.

KEYWORDS: *AI Technology, Commercial Application, Multi -Modal Interaction Design, Automotive*

I. INTRODUCTION

Artificial Intelligence (AI) is revolutionizing the automotive industry by enhancing vehicle functionality, safety, and user experience. AI technologies are integral to advancements in autonomous driving, predictive maintenance, and personalized in-car experiences, making vehicles smarter and more efficient. For instance, AI-driven systems enable real-time data analysis, allowing for features like adaptive cruise control and lane-keeping assistance, which contribute to safer driving environments (OpenXcell, 2024).

Multimodal interaction design, which integrates various user input methods such as voice, touch, and gesture, plays a crucial role in enhancing user experience within vehicles. By allowing drivers and passengers to interact with in-car systems through multiple modalities, these designs improve accessibility, reduce driver distraction, and create more intuitive interfaces. The combination of visual, auditory, and tactile feedback ensures that

interactions are seamless and responsive, catering to diverse user preferences and situational demands (Wang et al., 2024).

The commercial viability of AI-driven systems in automotive applications is gaining significant attention. Automakers are investing heavily in AI technologies to differentiate their products in a competitive market, aiming to offer enhanced safety features, improved user experiences, and greater operational efficiency. The integration of AI not only meets consumer demands for advanced functionalities but also opens new revenue streams through services like AI-based infotainment and driver assistance systems. This focus on commercial applications underscores the industry's commitment to leveraging AI for both innovation and profitability (LeewayHertz, 2024).

In the rapidly evolving automotive industry, the integration of artificial intelligence (AI) into multimodal interaction design has become pivotal for enhancing user experience (UX). Multimodal interfaces, which combine various input methods such as voice, touch, and gesture, are increasingly prevalent in vehicles, necessitating robust methodologies for UX evaluation. Recent studies emphasize the importance of comprehensive evaluation processes to assess the effectiveness and user satisfaction of these systems (HTC Inc., 2023). Developing standardized UX evaluation methods is crucial for ensuring that AI-driven multimodal interfaces meet user expectations and industry standards.

Concurrently, AI technology is revolutionizing the automotive sector by enabling advancements in autonomous driving, predictive maintenance, and personalized in-car experiences. The global automotive AI market is projected to reach \$74.5 billion by 2030, indicating significant commercial potential (OpenXcell, 2023). AI applications are streamlining production processes and optimizing vehicle functionalities, offering substantial benefits to manufacturers and consumers alike. Exploring these commercial applications is essential for understanding how AI can be leveraged to create innovative, efficient, and user-friendly automotive solutions.

The integration of artificial intelligence (AI) in multimodal interaction design within the automotive industry holds significant implications for user experience (UX) design, AI technology adoption, and industry innovation. By enabling more natural and intuitive interactions through the combination of various input modalities—such as voice, touch, and gesture—AI-driven multimodal interfaces enhance the overall user experience, making in-vehicle systems more responsive and user-friendly. This advancement aligns with the growing demand for seamless human-computer interactions in modern vehicles (Wang et al., 2024).

From a practical standpoint, automotive manufacturers and technology developers can leverage AI-enhanced multimodal interfaces to differentiate their products in a competitive market. Implementing these advanced interaction systems can lead to increased customer satisfaction and brand loyalty by providing drivers and passengers with more engaging and efficient in-car experiences. Moreover, the adoption of AI in multimodal interaction design can streamline the development of adaptive and personalized user interfaces, catering to diverse user preferences and needs (Gomaa, 2022).

Furthermore, the incorporation of AI technologies in vehicle systems contributes to broader industry innovation by fostering the development of intelligent vehicles capable of understanding and responding to complex human inputs. This progression not only enhances safety and usability but also paves the way for future advancements in autonomous driving and smart mobility solutions (Stappen et al., 2023).

II. LITERATURE REVIEW

A. AI Technology in Automotive Design

Artificial Intelligence (AI) has significantly transformed automotive design, particularly through applications like voice recognition and gesture control. Voice recognition systems enable drivers to operate various in-car functions using natural language commands, enhancing safety by minimizing manual interactions. For instance, Cerence AI has collaborated with Nvidia to develop advanced voice recognition software tailored for automobiles, aiming to improve in-car communication systems (Investors Business Daily, 2024).

Gesture control technology allows drivers to manage vehicle systems through simple hand movements, reducing the need for physical buttons and touchscreens. This innovation contributes to a more intuitive and less distracting user experience. AI-driven gesture recognition systems interpret specific hand movements to control functions like audio volume and navigation, thereby enhancing driver convenience and safety (Restackio, 2024).

Recent trends indicate a shift towards AI-driven multimodal interaction systems that integrate various input methods—such as voice, gesture, and touch—to create a seamless and intuitive user experience. These systems aim to provide more natural and efficient ways for drivers and passengers to interact with vehicle interfaces. For example, AAC Technologies introduced an immersive in-car solution that combines multiple interaction modalities, accelerating the development of intelligent cockpit experiences (Auto Connected Car News, 2024).

Furthermore, the integration of generative AI models in intelligent vehicle systems has the potential to revolutionize user interactions by delivering more personalized and context-aware experiences. Stappen et al. (2023) discuss how generative AI can facilitate multimodal interactions encompassing audio, video, and speech, thereby enhancing the overall driving experience.

AI applications such as voice recognition and gesture control are reshaping automotive design by enhancing user interaction and safety. The ongoing development of AI-driven multimodal systems and generative AI models suggests a future where vehicle interfaces become increasingly intuitive and responsive to the needs of users.

B. User Experience Evaluation

User Experience (UX) evaluation in multimodal environments is grounded in several theoretical foundations that emphasize the holistic nature of user interactions. Traditional usability metrics—effectiveness, efficiency, and satisfaction—are expanded to encompass users' emotions, beliefs, and perceptions before, during, and after

interaction with a system. This comprehensive approach acknowledges that user experience extends beyond mere functionality to include emotional and psychological responses.

In multimodal environments, where users interact through various channels such as voice, touch, and gestures, evaluating UX becomes more complex. Theoretical models in this domain advocate for a multidimensional approach that considers the interplay between different modalities and their collective impact on user experience. This perspective is crucial for designing interactions that are not only functional but also intuitive and engaging.

However, assessing UX in AI-driven designs presents distinct challenges. One significant issue is the reliance on automated algorithms, which may not capture the full spectrum of usability concerns that human analysis can identify. This limitation underscores the need for human insight in the evaluation process to ensure a comprehensive understanding of user experience.

Additionally, the quality of data used to train AI models is paramount. Inaccurate or biased data can lead to AI systems that do not align with user needs or expectations, resulting in suboptimal user experiences. Therefore, ensuring high-quality, representative data is essential for developing AI-driven designs that enhance rather than detract from user satisfaction.

Furthermore, the integration of AI into UX design introduces challenges related to transparency and user trust. Users may find it difficult to understand or predict AI behaviors, leading to confusion or mistrust. Addressing these challenges requires designing AI systems that are not only intelligent but also explainable and aligned with user expectations.

The theoretical foundations of UX evaluation in multimodal environments provide a robust framework for understanding user interactions, the advent of AI-driven designs introduces new challenges. Addressing these challenges necessitates a nuanced approach that combines traditional UX evaluation methods with considerations unique to AI technologies.

C. Multimodal Interaction Design

Multimodal interaction design integrates multiple sensory modalities, such as visual, auditory, and tactile inputs, to create intuitive and efficient human-machine interfaces. In the automotive industry, this design approach enhances driver and passenger experiences by enabling seamless interactions with in-vehicle systems. By leveraging various input methods, multimodal interfaces reduce cognitive load and improve safety, allowing users to choose the most convenient mode of interaction based on the driving context (Pfleging & Schmidt, 2012). Key components of multimodal interaction include voice interaction, touch interfaces, visual displays, and tactile feedback. Voice commands enable drivers to control navigation, entertainment, and communication systems hands-free, a vital feature as advancements in voice recognition technology improve accuracy and responsiveness (Gomaa, 2022). Touch interfaces, such as touchscreens and touch-sensitive controls, offer direct manipulation of functions but require careful design to minimize driver distraction (Pfleging & Schmidt, 2011).

Visual displays, including dashboards, infotainment screens, and heads-up displays (HUDs), provide critical information in a clear and quickly processed format, supporting safe driving practices (Wang et al., 2024). Tactile feedback, such as vibrations or force cues, adds an additional layer of interaction by delivering immediate, non-visual signals, which are particularly useful for alerting drivers without diverting their attention from the road (Prabhakar & Biswas, 2021). By integrating these modalities, multimodal interaction design enhances usability, safety, and user satisfaction in modern vehicles, accommodating diverse user preferences and situational demands.

D. Commercial Applications of AI in Automotive

Artificial Intelligence (AI) is revolutionizing the automotive industry, introducing a range of commercial applications that enhance vehicle performance, safety, and user experience. Current implementations include advanced driver-assistance systems (ADAS), autonomous driving capabilities, predictive maintenance, and personalized in-car experiences. For instance, AI-driven voice recognition technologies are being integrated into vehicles to provide seamless interaction between drivers and infotainment systems. Cerence AI's recent collaboration with Nvidia aims to enhance the development of large language models for automotive applications, indicating a significant advancement in this area.

The market potential for AI-driven designs in the automotive sector is substantial. Projections suggest that the automotive AI market will experience significant growth in the coming years, driven by increasing consumer demand for enhanced safety features and personalized driving experiences. However, challenges persist, including concerns about data privacy, regulatory hurdles, and the need for extensive real-world testing to ensure the reliability and safety of AI systems. Additionally, the integration of AI technologies requires significant investment and poses technical challenges related to system compatibility and cybersecurity. Addressing these challenges is crucial for the widespread adoption and commercial success of AI-driven designs in the automotive industry.

III. METHODOLOGY

The proposed conceptual model illustrates the interrelationships between AI technology, multimodal interaction design, user experience (UX), and commercial applications in the automotive industry. AI technology serves as the foundation, enabling intelligent decision-making and processing within multimodal systems. Its integration allows for the seamless combination of various interaction modalities, such as voice, touch, and gesture, creating a cohesive and adaptive user experience (Bieniek et al., 2024). Multimodal interaction design, powered by AI, enhances user interactions by aligning system responses with user preferences and contextual needs, offering a more natural and efficient interface (Valverde et al., 2021).

The quality of UX is directly influenced by the integration of AI-driven multimodal systems. When designed effectively, these systems lead to higher user satisfaction, increased usability, and greater acceptance of technology. Understanding the influence of AI on UX is critical for creating interfaces that meet user expectations

and foster engagement (Zamani, Mikalef, & Zhu, 2023). Ultimately, these advancements drive commercial applications, translating technological innovations into market-ready solutions. Positive UX, facilitated by AI, enhances customer satisfaction and loyalty, thereby contributing to competitive advantages in the automotive industry (Bieniek et al., 2024).

The model emphasizes the cyclical relationship among these elements, where market outcomes provide feedback for refining AI technologies and multimodal systems. This approach underscores the interconnectedness of AI integration, user-centric design, and commercial viability, offering a roadmap for leveraging AI-driven multimodal interfaces to reshape the automotive industry.

In the context of multimodal interaction design within the automotive industry, several key variables are essential for evaluating user experience (UX) and assessing commercial viability. **User experience dimensions** such as usability, accessibility, and satisfaction play a significant role in the adoption of AI-driven systems. Usability focuses on the effectiveness, efficiency, and satisfaction with which users achieve their goals. In automotive applications, high usability minimizes distractions and enhances safety, as emphasized by Ara, Sik-Lanyi, and Kelemen (2024). Accessibility, which involves designing systems usable by individuals with diverse abilities, is critical for creating inclusive automotive interfaces (Choi & Seo, 2024). Satisfaction, which measures how well user expectations are met, influences driver comfort and brand loyalty, as highlighted in recent studies by Zhou, Williams, and Ortega (2022). Evaluating these dimensions provides a foundation for user-centered system design.

Interaction modalities such as voice, touch, and gesture further define the user experience in multimodal systems. Voice interaction enables hands-free control, enhancing convenience and safety, with studies suggesting that combining voice with other modalities improves efficiency (Saren et al., 2024). Touch interfaces offer intuitive interactions but require visual attention, which can increase cognitive load. Complementary modalities, such as gesture-based controls, allow for physical movement-based commands, reducing reliance on touch interfaces. The success of these interactions depends on system accuracy and intuitive design, as shown by Li et al. (2023) and Zhou et al. (2022).

Commercial viability metrics such as cost-effectiveness and scalability are crucial for assessing the broader implementation of AI-driven systems in the automotive industry. Cost-effectiveness evaluates whether the benefits of these systems justify their development and deployment costs, which is vital for widespread adoption. Scalability ensures that the systems can be implemented across diverse vehicle models and market segments, adapting to various user needs and preferences. Together, these metrics and UX dimensions provide a comprehensive framework for developing AI-enhanced multimodal interaction systems that offer superior user experiences while remaining commercially viable in the automotive industry.

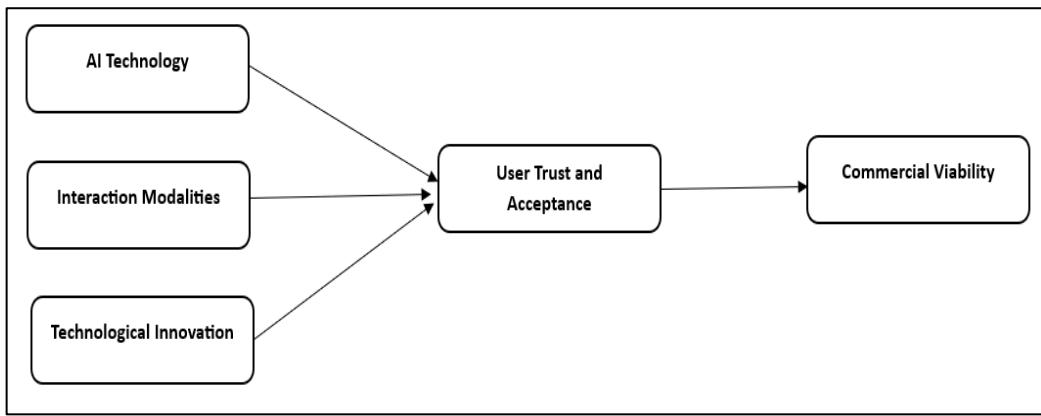


Figure 1; Conceptual Framework

This paper, we prioritize a theoretical exploration of the relationships between AI technology, multimodal interaction design, user experience evaluation, and their commercial applications within the automotive industry. This approach aligns with the principles of conceptual research, which emphasizes understanding and mapping the interconnections among key concepts without immediate empirical testing. As noted by Yadav (2020), conceptual research plays a crucial role in advancing theoretical insights by focusing on the development and refinement of ideas and frameworks.

By adopting this theoretical focus, we aim to construct a robust conceptual framework that elucidates how AI-driven multimodal interfaces can enhance user experience and drive commercial success in automotive applications. This framework serves as a foundation for future empirical studies, guiding researchers in formulating hypotheses and designing methodologies that can test the proposed relationships in real-world settings. Such an approach ensures that subsequent empirical investigations are grounded in a well-defined theoretical context, enhancing the validity and relevance of research findings.

Evaluating user experience (UX) in multimodal systems requires a comprehensive framework that combines various methodologies to capture the intricate dynamics of user interactions. A proposed framework includes heuristic evaluations, user feedback, and simulated testing. Heuristic evaluations involve expert reviewers assessing the system against established usability principles to identify potential design and interaction flow issues. This method is efficient and cost-effective for uncovering usability challenges without extensive user involvement. For example, Turunen et al. (2009) introduced SUXES, a method tailored to evaluate spoken and multimodal interactions, emphasizing the importance of heuristic approaches in identifying design flaws. Collecting user feedback is another essential component, as it provides direct insights into users' perceptions, satisfaction, and overall experience with the system. Tools such as questionnaires, interviews, and think-aloud protocols are commonly employed for this purpose. Wechsung and Naumann (2008) highlighted the value of standardized usability questionnaires in capturing user feedback for multimodal systems.

Simulated testing is a crucial method for creating controlled environments where users interact with the system, enabling the observation of behaviors and identification of usability issues. This approach provides both qualitative and quantitative data, offering a more comprehensive understanding of user behavior. Schaffer et al. (2016) discussed the benefits of simulated testing in evaluating multimodal interaction designs, emphasizing its effectiveness in refining usability. By integrating these methods, the proposed evaluation framework ensures a holistic assessment of UX, combining expert analyses with user perspectives. This comprehensive approach facilitates iterative design improvements, ultimately enhancing the usability and effectiveness of multimodal interaction systems.

To empirically validate the proposed conceptual model on user experience evaluation and the commercial applications of AI technology in multimodal interaction design for the automotive industry, future research could adopt various approaches. Controlled experimental studies can assess the effectiveness of AI-driven multimodal interfaces in vehicles. For example, Yu, Zhang, and Burnett (2023) conducted experiments to explore the design and user experience of in-vehicle multimodal intuitive interfaces, providing empirical evidence to refine interface designs. Additionally, industry case studies in collaboration with automotive manufacturers could implement and evaluate AI-based multimodal systems in real-world settings. Aftab, von der Beeck, and Feld (2020) demonstrated the potential of multimodal fusion methods for object selection inside automobiles, showcasing practical applications of such technologies.

Furthermore, user-centered adaptive approaches can play a significant role in enhancing the reliability and personalization of automotive interfaces. Gomaa (2022) proposed a framework focusing on adaptive user-centered multimodal interaction to improve the reliability and trustworthiness of vehicle systems. Another promising avenue is the use of mixed-immersive analysis tools, such as AutoVis, which combines non-immersive desktop and virtual reality views for analyzing automotive user interfaces. Jansen et al. (2023) introduced this tool, demonstrating its utility in evaluating complex interaction data. These methods collectively offer robust avenues for testing and refining the conceptual model, ultimately advancing the development of effective and user-friendly AI-driven multimodal interaction designs in the automotive industry.

IV. FINDINGS

Integrating artificial intelligence (AI) into automotive user experience (UX) design has significantly advanced both fields, offering new insights at their intersection. AI's role in enhancing UX design is evident in its ability to create personalized and intuitive in-car interactions. For instance, Mercedes-Benz's MBUX system utilizes AI to adapt to user preferences, providing a more responsive and customized driving experience.

This integration underscores AI's potential to revolutionize user-centric design by enabling systems that learn from and anticipate user needs. In the automotive industry, AI-driven multimodal interaction designs—encompassing voice, touch, and gesture controls—are transforming how users interact with vehicles. These advancements facilitate more natural and efficient communication between drivers and in-car systems, enhancing

safety and satisfaction. The collaboration between Qualcomm and Google to develop AI-powered voice assistants exemplifies this trend, aiming to provide seamless and intuitive user experiences in vehicles.

The convergence of AI and UX design in automotive applications presents several theoretical implications. It challenges traditional design paradigms by introducing dynamic, learning-based systems that evolve with user interactions. This shift necessitates a reevaluation of UX design principles to accommodate AI's adaptive capabilities. Moreover, it highlights the importance of interdisciplinary approaches, combining insights from AI, human-computer interaction, and automotive engineering to create cohesive and user-friendly designs.

Furthermore, the integration of AI in automotive UX design raises considerations regarding user trust and acceptance. Designers must ensure that AI-driven features are transparent and align with user expectations to foster trust. Understanding user perceptions of AI within the automotive context is crucial for developing systems that are not only technologically advanced but also widely accepted by consumers.

In summary, the intersection of AI technology and user-centric design in the automotive industry offers substantial contributions to both AI and UX design literature. It provides a fertile ground for exploring how adaptive, intelligent systems can enhance user experiences, prompting a reexamination of design methodologies to incorporate AI's dynamic nature. As the automotive industry continues to evolve with AI integration, ongoing research is essential to fully understand and harness the potential of AI in creating user-centered automotive designs.

Integrating AI-driven multimodal systems into automotive design requires manufacturers to address several practical considerations to ensure both user satisfaction and commercial feasibility. Prioritizing user-centered design is critical, as intuitive and adaptable interfaces can enhance usability and acceptance. Gomaa (2022) highlights the importance of adaptive, user-centered multimodal interaction systems tailored to individual preferences to improve reliability and trust. Additionally, system reliability and safety must be prioritized through robust testing protocols and fail-safes, reducing risks associated with system errors or failures. Balancing innovation with cost-effectiveness is also crucial. While advanced AI technologies can revolutionize user interactions, their affordability and practicality must align with market demands (Stappen et al., 2023).

Seamless multimodal integration is another key factor, requiring the harmonious operation of input methods such as voice, touch, and gesture to prevent user frustration and improve satisfaction. Prabhakar et al. (2021) propose wearable virtual touch systems that reduce driver distraction and enhance usability, showcasing the potential of multimodal interaction. Comprehensive user experience evaluations are equally important, as regular assessments of user interactions can provide valuable feedback for iterative design improvements. Tools like AutoVis, introduced by Jansen et al. (2023), facilitate mixed-immersive analysis of automotive interfaces, enabling in-depth evaluations of user behavior and system performance. By addressing these factors, manufacturers can successfully integrate AI-driven multimodal systems that optimize user experience while maintaining commercial feasibility.

In the rapidly evolving automotive industry, integrating AI-driven multimodal interaction designs presents significant challenges and opportunities. One major challenge is the technological complexity involved in developing sophisticated AI systems capable of seamlessly integrating various interaction modalities, such as voice, touch, and gesture. These systems require advanced algorithms and substantial computational resources, which can hinder swift adoption (Kaushik, 2024). Additionally, user acceptance remains a critical barrier, as the success of AI-driven interfaces heavily depends on trust. Concerns about data privacy, security, and the reliability of AI systems often lead to user skepticism. For example, studies have shown that many users remain hesitant to fully embrace automated vehicles due to doubts about their safety and reliability (Nordhoff et al., 2021).

Despite these challenges, there are considerable opportunities for innovation. AI enables the creation of intuitive and personalized in-car experiences by analyzing user preferences and behaviors, thereby enhancing satisfaction and engagement. For instance, AI-powered voice assistants are being developed to provide tailored navigation and proactive suggestions, significantly improving the overall driving experience (Ebel, 2024). Moreover, the integration of AI opens avenues for novel interface designs, such as attentive user interfaces that enhance driver awareness and safety. These innovations could improve situational awareness in automated driving, leading to safer vehicle operations (Ebel, 2024). From a commercial perspective, AI-driven multimodal systems have the potential to differentiate automotive brands in a competitive market, increasing market share and profitability (Kaushik, 2024). Addressing barriers such as technological complexity and user skepticism through user-centric design and transparent communication is essential. By doing so, the automotive industry can harness the full potential of AI to revolutionize in-car interactions and deliver exceptional user experiences.

V. CONCLUSION

Integrating artificial intelligence (AI) technology with user-centered design (UCD) principles is essential for developing automotive systems that are both innovative and user-friendly. This integration ensures that AI-driven multimodal interaction designs align with user needs and preferences, enhancing overall user experience. By focusing on UCD, designers can create AI systems that are intuitive, accessible, and responsive, leading to higher user satisfaction and adoption rates. Moreover, incorporating UCD principles addresses ethical considerations, such as user privacy and transparency, fostering trust between users and AI systems. Recent studies highlight the significance of this integration, emphasizing that AI technologies designed with a user-centered approach are more likely to be effective and widely accepted (Restackio, 2024).

To empirically validate the proposed conceptual framework, future research should explore several critical areas. Longitudinal studies can provide insights into how AI-driven multimodal interaction designs impact user experience (UX) over time in the automotive industry. These studies are essential for understanding trends, user adaptation, and long-term satisfaction with AI-based interfaces. Comparative evaluations of multimodal systems, focusing on various modality combinations such as voice, gesture, and touch, could identify the most effective configurations for enhancing UX. For example, Yu, Zhang, and Burnett (2023) examined in-vehicle multimodal intuitive interfaces and highlighted user preferences and system effectiveness. Additionally, adaptive user-

centered multimodal interaction approaches should be investigated to ensure reliable and trusted automotive interfaces. Gomaa (2022) emphasized the importance of user-centered adaptation and personalization to build trust in human-centered AI in the automotive context.

Moreover, immersive analysis tools can facilitate the evaluation of complex automotive user interfaces. Jansen et al. (2023) introduced AutoVis, a mixed-immersive tool combining desktop and virtual reality views to analyze user interactions with automotive interfaces, showcasing the potential of immersive analytics for detailed evaluations. By addressing these areas, future research can provide empirical evidence to support the integration of AI in multimodal interaction design, contributing to enhanced user experience and commercial viability in the automotive industry.

This conceptual exploration underscores the transformative potential of integrating artificial intelligence (AI) into multimodal interaction design within the automotive industry. By examining user experience evaluation and commercial applications, the study highlights how AI can enhance in-car interactions, leading to more intuitive and personalized user experiences. Recent advancements demonstrate AI's capacity to facilitate seamless communication between drivers and vehicles through modalities such as voice, gesture, and touch, thereby improving safety and user satisfaction. For instance, Gomaa (2022) discusses adaptive user-centered multimodal interactions aimed at developing reliable and trusted automotive interfaces.

Furthermore, the commercial viability of AI-driven multimodal systems is becoming increasingly evident. Stappen et al. (2023) explore the integration of generative AI in intelligent vehicle systems, emphasizing its role in revolutionizing user interactions and delivering more immersive in-car experiences.

By focusing on the intersection of AI technology, user experience, and multimodal interaction design, this paper contributes to the growing body of knowledge essential for driving innovation in automotive human-machine interfaces. The insights provided herein serve as a foundation for future research and development, guiding the creation of advanced, user-friendly, and commercially viable AI applications in the automotive sector.

REFERENCES

Aftab, A. R., von der Beeck, M., & Feld, M. (2020). You Have a Point There: Object Selection Inside an Automobile Using Gaze, Head Pose and Finger Pointing. *arXiv preprint arXiv:2012.13449*.

Auto Connected Car News. (2024). @CES ACC Intros AI Multimodal Interaction. Retrieved from <https://www.autoconnectedcar.com/2024/01/ces-acc-intros-ai-motimdal-interaction/>

Ara, J., Sik-Lanyi, C., & Kelemen, A. (2024). Accessibility engineering in web evaluation process: a systematic literature review. *Universal Access in the Information Society*, 23, 653–686. <https://doi.org/10.1007/s10209-023-00967-2>

Bieniek, M., & others. (2024). Generative AI in Multimodal User Interfaces: Trends, Challenges, and Opportunities. *arXiv preprint arXiv:2411.10234*.

Choi, G. W., & Seo, J. (2024). Accessibility, Usability, and Universal Design for Learning: Discussion of Three Key LX/UX Elements for Inclusive Learning Design. *TechTrends*, 68, 936–945. <https://doi.org/10.1007/s11528-024-00987-6>

DigitalDefynd. (2024). Top 5 AI Use in Automotive Industry Case Studies. Retrieved from <https://digitaldefynd.com/IQ/ai-in-automotive-industry-case-studies/>

Ebel, P. (2024). Generative AI and Attentive User Interfaces: Five Strategies to Enhance Take-Over Quality in Automated Driving. *arXiv preprint arXiv:2402.10664*.

Gomaa, A. (2022). Adaptive User-Centered Multimodal Interaction towards Reliable and Trusted Automotive Interfaces. *arXiv preprint arXiv:2211.03539*.

Gomaa, A. (2022). Adaptive User-Centered Multimodal Interaction towards Reliable and Trusted Automotive Interfaces. *arXiv preprint arXiv:2211.03539*. Retrieved from <https://arxiv.org/abs/2211.03539>

HTC Inc. (2023). *AI-driven Multimodal Interfaces: The Future of User Experience (UX)*. Retrieved from <https://www.htcinc.com/resources/ai-driven-multimodal-interfaces-the-future-of-user-experience-ux/>

Investors Business Daily. (2024). *SoundHound Rival Cerence AI Scores Nvidia Automotive Pact. Shares Surge*. Retrieved from <https://www.investors.com/news/technology/soundhound-stock-cerence-nvidia-automotive-ai-voice-recognition/>

Jansen, P., Britten, J., Häusele, A., Segschneider, T., Colley, M., & Rukzio, E. (2023). AutoVis: Enabling Mixed-Immersive Analysis of Automotive User Interface Interaction Studies. *arXiv preprint arXiv:2302.10531*.

Kaushik, N. (2024). Generative AI Creates Challenges and Opportunities for the Entire Automotive Industry. *Forbes*.

LeewayHertz. (2024). *AI for Automotive: Use Cases, Technologies, and Future Prospects*. Retrieved from <https://www.leewayhertz.com/ai-use-cases-in-the-automotive-industry/>

Li, Z., Liang, C., Wang, Y., Qin, Y., Yu, C., Yan, Y., Fan, M., & Shi, Y. (2023). Enabling Voice-Accompanying Hand-to-Face Gesture Recognition with Cross-Device Sensing. *arXiv preprint arXiv:2303.10441*. <https://doi.org/10.48550/arXiv.2303.10441>

Nordhoff, S., de Winter, J., Kyriakidis, M., van Arem, B., & Happee, R. (2021). Acceptance of Automated Driving: An Overview of User-Related Issues. In *Autonomous Driving* (pp. 521-554). Springer, Berlin, Heidelberg.

OpenXcell. (2024). *AI in Automotive Industry: Applications, Benefits, and Future Trends*. Retrieved from <https://www.openxcell.com/blog/ai-in-automotive-industry/>

OpenXcell. (2023). *AI in Automotive Industry: Applications, Benefits, and Future Trends*. Retrieved from <https://www.openxcell.com/blog/ai-in-automotive-industry/>

Pfleging, B., & Schmidt, A. (2012). Multimodal Interaction in the Car - Combining Speech and Gestures on the Steering Wheel. *Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications*, 155-162.

Pfleging, B., & Schmidt, A. (2011). SpeeT: A Multimodal Interaction Style Combining Speech and Touch Interaction in Automotive Environments. *Proceedings of the 13th International Conference on Human-Computer Interaction with Mobile Devices and Services*, 69-72.

Prabhakar, G., & Biswas, P. (2021). A Wearable Virtual Touch System for Cars. *arXiv preprint arXiv:2106.05700*.

Prabhakar, G., Rajkhowa, P., & Biswas, P. (2021). A Wearable Virtual Touch System for Cars. *arXiv preprint arXiv:2106.05700*.

Ramseook-Munhurrun, P., Seebaluck, V. N., & Naidoo, P. (2015). Examining the Structural Relationships of Destination Image, Perceived Value, Tourist Satisfaction, and Loyalty: Case of Mauritius. *Tourism Management*, 48, 362-372. <https://doi.org/10.1016/j.tourman.2014.12.011>

Restackio. (2024). Voice Recognition In Automotive Tech. Retrieved from <https://www.restack.io/p/ai-powered-autonomous-vehicles-answer-voice-recognition-cat-ai>

Restackio. (2023). AI-Driven UX Design Challenges. Retrieved from <https://www.restack.io/p/ai-driven-user-experience-answer-ux-design-challenges-cat-ai>

Restackio. (2024). Importance Of User-Centered Design In AI. Retrieved from <https://www.restack.io/p/human-centric-ai-design-answer-importance-user-centered-design-cat-ai>

Reuters. (2024, October 22). *Qualcomm, Alphabet team up for automotive AI; Mercedes inks chip deal*. Retrieved from <https://www.reuters.com/technology/artificial-intelligence/qualcomm-alphabet-team-up-automotive-ai-mercedes-inks-chip-deal-2024-10-22/>

Saren, S., Mukhopadhyay, A., Ghose, D., & Biswas, P. (2024). Comparing alternative modalities in the context of multimodal human-robot interaction. *Journal on Multimodal User Interfaces*, 18, 69-85. <https://doi.org/10.1007/s12193-023-00421-w>

Schaffer, S. M., Böck, R., & Weis, T. (2016). Benefit, design and evaluation of multimodal interaction. In *Proceedings of the 1st International Workshop on Designing Speech and Language Interactions* (pp. 1-6).

Sun, W., Tang, S., & Liu, F. (2021). Examining Perceived and Projected Destination Image: A Social Media Content Analysis. *Sustainability*, 13(6), 3354. <https://doi.org/10.3390/su13063354>

Stappen, L., Dillmann, J., Striegel, S., Vögel, H.-J., Flores-Herr, N., & Schuller, B. W. (2023). Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems. *arXiv preprint arXiv:2305.17137*.

Stappen, L., Dillmann, J., Striegel, S., Vögel, H.-J., Flores-Herr, N., & Schuller, B. W. (2023). Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems. *arXiv preprint arXiv:2305.17137*. Retrieved from <https://arxiv.org/abs/2305.17137>

Stappen, L., Dillmann, J., Striegel, S., Vögel, H. J., Flores-Herr, N., & Schuller, B. W. (2023). *Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems*. Retrieved from <https://arxiv.org/abs/2305.17137>

Turunen, M., Hakulinen, J., Melto, A., Heimonen, T., Laivo, T., & Hella, J. (2009). SUXES - user experience evaluation method for spoken and multimodal interaction. *Interspeech 2009*.

Unite.AI. (2022). When AI Meets User Experience: Challenges Linger, Opportunities Shine Ever Brighter. Retrieved from <https://www.unite.ai/when-ai-meets-user-experience-challenges-linger-opportunities-shine-ever-brighter/>

Valverde, F., & others. (2021). Towards a model-driven approach for multiexperience AI-based user interfaces. *Software and Systems Modeling*, 20, 1345–1363.

Wang, Y., Xue, Z., Li, J., Jia, S., & Yang, B. (2024). *Multimodal Interaction Design in Intelligent Vehicles*. In *Human-Machine Interaction (HMI) Design for Intelligent Vehicles* (pp. 161–188). Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-981-97-7823-2_6

Wang, Y., Xue, Z., Li, J., Jia, S., & Yang, B. (2024). Multimodal Interaction Design in Intelligent Vehicles. In *Human-Machine Interaction (HMI) Design for Intelligent Vehicles* (pp. 161–188). Springer.

Wei, J., Zhou, L., & Li, L. (2024). A Study on the Impact of Tourism Destination Image and Local Attachment on the Revisit Intention: The Moderating Effect of Perceived Risk. *PLOS ONE*, 19(1), e0296524. <https://doi.org/10.1371/journal.pone.0296524>

Wechsung, I., & Naumann, A. B. (2008). Evaluation methods for multimodal systems: A comparison of standardized usability questionnaires. In *International Conference on Multimodal Interfaces* (pp. 276–283). Springer.

Yu, Y., Zhang, Y., & Burnett, G. (2023). "Tell me about that church": Exploring the Design and User Experience of In-Vehicle Multi-modal Intuitive Interface in the Context of Driving Scenario. *arXiv preprint arXiv:2311.04160*.

Yu, Y., Zhang, Y., & Burnett, G. (2023). "Tell me about that church": Exploring the Design and User Experience of In-Vehicle Multi-modal Intuitive Interface in the Context of Driving Scenario. *arXiv preprint arXiv:2311.04160*.

Zamani, M., Mikalef, P., & Zhu, Y. (2023). Artificial intelligence (AI) for user experience (UX) design: a systematic review. *Information Technology & People*.

Zhou, X., Williams, A. S., & Ortega, F. R. (2022). Eliciting Multimodal Gesture+Speech Interactions in a Multi-Object Augmented Reality Environment. *arXiv preprint arXiv:2207.12566*. <https://doi.org/10.48550/arXiv.2207.12566>