Technological Transformation in Healthcare: A Global Perspective

Authors

  • Muhammad Fahad COMSATS University Islamabd

DOI:

https://doi.org/10.56982/dream.v3i12.294

Keywords:

healthcare, digital transformatin, policy framework, cybersecurity, AI

Abstract

The healthcare sector is undergoing significant transformation due to the rapid adoption of digital technologies. This paper explores the impact of digital transformation on healthcare, focusing on developed and developing countries. It examines the role of artificial intelligence, blockchain, telemedicine, and digital health infrastructure in improving patient care and operational efficiency. Additionally, the paper highlights challenges such as digital literacy, cybersecurity risks, and infrastructure disparities. Future guidelines emphasize closing the digital divide, reinforcing regulatory frameworks, and enhancing AI-driven precision medicine. The study concludes that a globally inclusive, technology-driven healthcare system requires collaboration between governments, technology firms, and healthcare institutions to ensure equitable access and sustainable advancements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Agbo, C. C., Mahmoud, Q. H., & Eklund, J. M. (2019). Blockchain technology in healthcare: A systematic review. Healthcare, 7(2), 56. https://doi.org/10.3390/healthcare7020056 DOI: https://doi.org/10.3390/healthcare7020056

Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2020). The digital transformation of healthcare: Current status and the road ahead. Health Affairs, 39(1), 1-9. https://doi.org/10.1377/hlthaff.2019.01011

Khan, S., Iqbal, K., Faizullah, S., Fahad, M., Ali, J., & Ahmed, W. (2019). Clustering based Privacy Preserving of Big Data using Fuzzification and Anonymization Operation. International Journal of Advanced Computer Science and Applications, 10(12). https://doi.org/10.14569/IJACSA.2019.0101239 DOI: https://doi.org/10.14569/IJACSA.2019.0101239

Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016). MedRec: Using blockchain for medical data access and permission management. Proceedings of the IEEE Open & Big Data Conference, 25(1), 254-258. DOI: https://doi.org/10.1109/OBD.2016.11

Bhaskar, S., Bradley, S., Sakhamuri, S., Moguilner, S., Chattu, V. K., Pandya, S., & Schroeder, S. (2020). Telemedicine across the globe—Position paper from the COVID-19 pandemic health system resilience program. Frontiers in Public Health, 8, 556720. https://doi.org/10.3389/fpubh.2020.556720 DOI: https://doi.org/10.3389/fpubh.2020.556720

Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare, 25-60. https://doi.org/10.1016/B978-0-12-818438-7.00001-2 DOI: https://doi.org/10.1016/B978-0-12-818438-7.00002-2

Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification, and open issues. Telematics and Informatics, 36, 55-81. https://doi.org/10.1016/j.tele.2018.11.006 DOI: https://doi.org/10.1016/j.tele.2018.11.006

Chawla, R., & Chandra, S. (2021). Digital health ecosystem: Opportunities and challenges for healthcare providers in India. Journal of Health Management, 23(1), 22-35. https://doi.org/10.1177/0972063421994901

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. https://doi.org/10.7861/futurehosp.6-2-94 DOI: https://doi.org/10.7861/futurehosp.6-2-94

Dwivedi, Y. K., Hughes, D. L., Coombs, C., Constantiou, I., Duan, Y., Edwards, J. S., ... & Upadhyay, N. (2021). Impact of COVID-19 on digital healthcare services: A systematic review. Journal of Business Research, 131, 1-17. https://doi.org/10.1016/j.jbusres.2021.03.056 DOI: https://doi.org/10.1016/j.jbusres.2021.03.056

Akter, H., Ahmed, W., Sentosa, I., Hizam, S. M., Sharin, F. H., & Mina, I. (2023). Building a Better Future Workforce: Digital Dexterity and Psychological Empowerment. 2023 3rd International Conference on Computing and Information Technology (ICCIT), 626–632. https://doi.org/10.1109/ICCIT58132.2023.10273912 DOI: https://doi.org/10.1109/ICCIT58132.2023.10273912

Ooi, K. B., & Tan, G. W. H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 59, 33–46. https://doi.org/10.1016/j.eswa.2016.04.015 DOI: https://doi.org/10.1016/j.eswa.2016.04.015

Engelhardt, M. A. (2017). Hitching healthcare to the blockchain: A use case for the medical industry. Health and Technology, 7(4), 429-437. https://doi.org/10.1007/s12553-017-0205-6 DOI: https://doi.org/10.22215/timreview/1111

Ahmed, W., Hizam, S. M., Sentosa, I., Akter, H., Yafi, E., & Ali, J. (2020). Predicting IoT Service Adoption towards Smart Mobility in Malaysia: SEM-Neural Hybrid Pilot Study. International Journal of Advanced Computer Science and Applications, 11(1), 524–535. https://doi.org/10.14569/IJACSA.2020.0110165 DOI: https://doi.org/10.14569/IJACSA.2020.0110165

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z

European Commission. (2020). Ethics guidelines for trustworthy AI. Retrieved from https://ec.europa.eu/futurium/en/ai-alliance-consultation

Hizam, S. M., Akter, H., Sentosa, I., & Ahmed, W. (2021). Digital competency of educators in the virtual learning environment: a structural equation modeling analysis. IOP Conference Series: Earth and Environmental Science, 704(1), 012023. https://doi.org/10.1088/1755-1315/704/1/012023 DOI: https://doi.org/10.1088/1755-1315/704/1/012023

Fagherazzi, G., Fischer, A., Ismael, M., & Despotovic, V. (2020). Voice for health: The use of vocal biomarkers from speech analysis in real-time remote monitoring of COVID-19 and chronic diseases. NPJ Digital Medicine, 3, 76. https://doi.org/10.1038/s41746-020-0288-3

Leong, L. Y., Hew, T. S., Ooi, K. B., Lee, V. H., & Hew, J. J. (2019). A hybrid SEM-neural network analysis of social media addiction. Expert Systems with Applications, 133, 296–316. https://doi.org/10.1016/j.eswa.2019.05.024 DOI: https://doi.org/10.1016/j.eswa.2019.05.024

Hizam, S. M., Ahmed, W., Akter, H., Sentosa, I., & Masrek, M. N. (2022). Web 3.0 Adoption Behavior: PLS-SEM and Sentiment Analysis. CEUR Workshop Proceedings (DBIS-2022 Conference, LATVIA), 3158, 113–126.

Garg, S., Williams, N. L., Ip, A., & Dicker, A. P. (2020). Telemedicine during COVID-19 pandemic: The ethical, legal, regulatory, and economic aspects. Current Oncology Reports, 22, 1-9. https://doi.org/10.1007/s11912-020-00950-x

Hölbl, M., Kompara, M., Kamišalić, A., & Nemec Zlatolas, L. (2018). A systematic review of the use of blockchain in healthcare. Symmetry, 10(10), 470. https://doi.org/10.3390/sym10100470 DOI: https://doi.org/10.3390/sym10100470

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present, and future. Stroke and Vascular Neurology, 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101 DOI: https://doi.org/10.1136/svn-2017-000101

Keesara, S., Jonas, A., & Schulman, K. (2020). Covid-19 and health care’s digital revolution. New England Journal of Medicine, 382(23), e82. https://doi.org/10.1056/NEJMp2005835 DOI: https://doi.org/10.1056/NEJMp2005835

Mathur, P., Srivastava, S., & Sharma, S. (2021). Blockchain technology adoption in healthcare: Literature review and research agenda. Journal of Health Management, 23(1), 74-93. https://doi.org/10.1177/0972063421994901

McKinsey & Company. (2022). The future of healthcare: Digital transformation trends. Retrieved from https://www.mckinsey.com/industries/healthcare-systems-and-services

Hizam, S. M., Ahmed, W., Fahad, M., Akter, H., Sentosa, I., & Ali, J. (2021). User Behavior Assessment Towards Biometric Facial Recognition System: A SEM-Neural Network Approach. In Advances in Intelligent Systems and Computing (Vol. 1364, pp. 1037–1050). Springer International Publishing. https://doi.org/10.1007/978-3-030-73103-8_75 DOI: https://doi.org/10.1007/978-3-030-73103-8_75

Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172. https://doi.org/10.1016/j.socscimed.2020.113172 DOI: https://doi.org/10.1016/j.socscimed.2020.113172

Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.

World Bank. (2022). Digital health transformation in low-income countries: Policy frameworks and implementation. Retrieved from https://www.worldbank.org/en/topic/digitalhealth

World Health Organization. (2021). Global strategy on digital health 2020-2025. Retrieved from https://www.who.int/publications/i/item/9789240020924

Siddique, M., Tasleem, Z., Siddiqua, A., Ahmad, S., & Ghaffar, H. A. (2023). Challenges in the implementation of Hospital Management Information System ({HMIS}) in healthcare sector: A case study of Lahore, Pakistan. Governance and Society Review, 2(2), 56–80.

Rahman, M. S., Ko, M., Warren, J., & Carpenter, D. (2016). Healthcare Technology Self-Efficacy (HTSE) and its influence on individual attitude: An empirical study. Computers in Human Behavior, 58, 12–24. https://doi.org/10.1016/j.chb.2015.12.016 DOI: https://doi.org/10.1016/j.chb.2015.12.016

Wong, L.-W., Tan, G. W.-H., Lee, V.-H., Ooi, K.-B., & Sohal, A. (2020). Unearthing the determinants of Blockchain adoption in supply chain management. International Journal of Production Research, 58(7), 2100–2123. https://doi.org/10.1080/00207543.2020.1730463 DOI: https://doi.org/10.1080/00207543.2020.1730463

Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., … Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66(4), 102542. https://doi.org/10.1016/j.ijinfomgt.2022.102542

Ahmed, W., Hizam, S. M., Akter, H., & Sentosa, I. (2020). Employee behavior towards big data analytics: A research framework. In Understanding Digital Industry (1st ed., pp. 192–195). Routledge. https://doi.org/10.1201/9780367814557-47 DOI: https://doi.org/10.1201/9780367814557-47

Yee-Loong Chong, A., Liu, M. J., Luo, J., & Keng-Boon, O. (2015). Predicting RFID adoption in healthcare supply chain from the perspectives of users. International Journal of Production Economics, 159, 66–75. https://doi.org/10.1016/j.ijpe.2014.09.034

Ooi, K. B., Foo, F. E., & Tan, G. W. H. (2018). Can Mobile Taxi Redefine the Transportation Industry? A Systematic Literature Review from the Consumer Perspective. International Journal of Mobile Communications, 16(1), 1. https://doi.org/10.1504/IJMC.2018.10004694 DOI: https://doi.org/10.1504/IJMC.2018.10004694

Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Chong, A. Y.-L. (2020). Predicting the antecedents of trust in social commerce – A hybrid structural equation modeling with neural network approach. Journal of Business Research, 110, 24–40. https://doi.org/10.1016/j.jbusres.2019.11.056 DOI: https://doi.org/10.1016/j.jbusres.2019.11.056

Leong, L. Y., Hew, T. S., Ooi, K. B., & Lin, B. (2019). Do Electronic Word-of-Mouth and Elaboration Likelihood Model Influence Hotel Booking? Journal of Computer Information Systems, 59(2), 146–160. https://doi.org/10.1080/08874417.2017.1320953 DOI: https://doi.org/10.1080/08874417.2017.1320953

Chong, A. Y., Liu, M. J., Luo, J., & Keng-boon, O. (2015). Int . J . Production Economics Predicting RFID adoption in healthcare supply chain from the perspectives of users. 159, 66–75. DOI: https://doi.org/10.1016/j.ijpe.2014.09.034

Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., … Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66, 102542. https://doi.org/10.1016/j.ijinfomgt.2022.102542 DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102542

Hizam, S. M., Akter, H., Sentosa, I., Ahmed, W., Masrek, M. N., & Ali, J. (2023). Predicting Workforce Engagement towards Digital Transformation through a Multi-Analytical Approach. Sustainability (Switzerland), 15(8). https://doi.org/10.3390/su15086835 DOI: https://doi.org/10.3390/su15086835

Hee, S., Kim, R. H., & Won, C. (2016). Effect of u-healthcare service quality on usage intention in a healthcare service ☆. Technological Forecasting & Social Change, 113, 396–403. DOI: https://doi.org/10.1016/j.techfore.2016.07.030

Zailani, S., Iranmanesh, M., Nikbin, D., & Beng, J. K. C. (2015). Determinants of RFID Adoption in Malaysia’s Healthcare Industry: Occupational Level as a Moderator. Journal of Medical Systems, 39(1). https://doi.org/10.1007/s10916-014-0172-4 DOI: https://doi.org/10.1007/s10916-014-0172-4

Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet, 15(9), 286. https://doi.org/10.3390/fi15090286 DOI: https://doi.org/10.3390/fi15090286

Masrek, M. N., Ahmed, W., Jalil, A., & Baharuddin, M. F. (2022). Mobile Game Addiction and Social Interaction Anxiety of Malaysian Youth. Environment-Behaviour Proceedings Journal, 7(SI10), 3–8. https://doi.org/10.21834/ebpj.v7iSI10.4094 DOI: https://doi.org/10.21834/ebpj.v7iSI10.4094

Shahbaz, M., Gao, C., Zhai, L. L., Shahzad, F., & Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0170-y DOI: https://doi.org/10.1186/s40537-019-0170-y

Asadi, S., Abdullah, R., Safaei, M., & Nazir, S. (2019). An Integrated SEM-Neural Network Approach for Predicting Determinants of Adoption of Wearable Healthcare Devices. Mobile Information Systems, 2019. https://doi.org/10.1155/2019/8026042 DOI: https://doi.org/10.1155/2019/8026042

Downloads

Published

2024-12-30

How to Cite

Fahad, M. (2024). Technological Transformation in Healthcare: A Global Perspective. Journal of Digitainability, Realism & Mastery (DREAM), 3(12), 73–84. https://doi.org/10.56982/dream.v3i12.294